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A local approach to dimensional reduction
II. Conformal invariance in Minkowski space
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Abstract

We consider the problem of obtaining conformally invariant differential operators in Minkowski
space. We show that the conformal electrodynamics equations and the gauge transformations for
them can be obtained in the frame of the method of dimensional reduction developed in the first part
of the paper. We describe a method for obtaining a large set of conformally invariant differential
operators in Minkowski space.
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1. Introduction

The conformal group is one of the most important symmetry groups in physics. It ap-
pears naturally in many physical problems, such as high-energy limit of quantum field
theory equations[9], phase transitions[14,16], the geometry of anti-de Sitter space[1], the
problem of the electromagnetic field of a charged particle moving with a constant relativistic
acceleration[8], the geometry of the classical Kepler problem[12]. In electrodynamics, the
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conformal invariance of Maxwell’s equations in vacuum was noticed as early as in 1909 by
Bateman[2] and Cunningham[3].

The connected componentC0(1,3) of the 15-parameter conformal group in Minkowski
spaceM consists of the 10-parameter Poincaré group, the dilatationsx �→ x′ = dx (d > 0)
and the 4-parameter nonlinear continuous group ofspecial conformal transformations,
which are compositions of an inversionI , a translation, and again an inversion:

x �→ I (x) �→ I (x)− a �→ I (I (x)− a) = x − |x|2a
1− 2a · x + |a|2|x|2 . (1)

The presence of the nonlinear transformations(1) makes the problem of constructing con-
formally invariant fields and especially conformally invariant differential operators very
complicated.

In the present paper, we study the problem of constructing conformally invariant fields
and differential operators in Minkowski space as well as gauge transformations that pre-
serve this invariance. We use the geometric construction of Dirac[4] in which the crucial
fact is thatC0(1,3) is locally isomorphic toO0(2,4)—the connected component of the
linear orthogonal group in the spaceR

6 endowed with a(− + + + +−) metric. In the
Dirac’s construction, each point inM is identified with an isotropic straight line inR6,
i.e., Minkowski space (more precisely, its conformal compactificationM̄—seeSection 2)
is realized as the projected light coneQP

5 ⊂ R
6. Because of this embedding ofM into R

6,
the action ofC0(1,3) onM corresponds exactly to the action ofO0(2,4) on the isotropic
straight lines inR6. This is why, it is tempting to consider the relation between the mani-
festlyO0(2,4)-invariant differential operators inR6 and theC0(1,3)-invariant differential
operators inM.

This relation, however, is not straightforward. The Dirac’s construction consists of two
steps, namely, projectingR6 onto RP

5, followed by the restriction ofRP
5 onto some

realization ofQP
5. Both steps are (in general) not natural for differential operators in

the sense that, in order to perform them, one needs some additional information.
To overcome these difficulties, we apply the methods developed in the first part of this

article[19] (which we will call Part I).
The plan of the article is the following. InSection 2, we describe Dirac’s construction,

and inSection 3, we discuss the dimensional reduction ofτ(R6) andτ ∗(R6). Sections 4
and 5are devoted to the reduction of the six-dimensional Maxwell equations (6DMEs),
and finally, in Section 6, we give a complete set of splitting relations for the Dirac’s
construction.

2. General description of the Dirac’s construction

We start with the conformal compactification̄M := (S1 × S3)/Z2 of Minkowski space
(for details see[21]). It is based on the Dirac’s construction[4] in which the points ofM̄
are identified with the isotropic straight lines in the six-dimensional real spaceR

6 with a
diagonal metric tensor(ηmn) = diag(−1,1,1,1,1,−1). LetQ6 be the light cone inR6 and
R be the multiplicative group of nonzero real numbers acting onR

6 (here and elsewhere,
R

6 andQ6 stand forR6 \ {0} andQ6 \ {0}, respectively). ThereforēM is the projected
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light cone:

M̄ ∼= QP
5 := Q

6

R
.

Let (ξm) := (ξµ, ξ5, ξ6) (m, n, . . . = 0,1,2,3,5,6; µ, ν, . . . = 0,1,2,3) be the canoni-
cal coordinates inR6. The isomorphismQP

5 ∼= (S1× S3)/Z2 is evident from

S1× S3 = {ξ ∈ R
6|(ξ0)2+ (ξ6)2 = (ξ1)2+ (ξ2)2+ (ξ3)2+ (ξ5)2 = 1}.

It is convenient to introduce inR6 coordinates adapted to the light coneQ6. Following
[7,10,13,17], we set

xµ := ξµ

ξ5+ ξ6
, k := ξ5+ ξ6, φ := ξmξm

2(ξ5+ ξ6)2
,

ξµ = kxµ, ξ5 = k
(

1− x2

2
+ φ

)
, ξ6 = k

(
1+ x2

2
+ φ

)
,

wherexµ := ηµνxν , ηµν := diag(−1,1,1,1), x2 := xµxµ. The Jacobian is

∂(ξµ, ξ5, ξ6)

∂(xµ, k, φ)
= −k2,

hence this change of variables is nondegenerate outside the hyperplanek = 0. The coordi-
nates(xµ, k, φ) will be referred to asQ-coordinates (the equation of the light coneQ6 in
Q-coordinates is 2k2φ = 0), whereas(ξm)will be calledξ -coordinates. We use the indices
“−” for k, “+” for φ, andM,N, . . . for (µ,−,+), etc. InQ-coordinates the components
of the metric tensor are

(gMN) :=



gµν gµ− gµ+
g−ν g– g−+
g+ν g+− g++


 =



k2ηµν 0 0

0 2φ k

0 k 0




and the nonzero Christoffel symbols areΓ µν− = (1/k)ηµν , Γ +µν = −ηµν , Γ +−+ = 1/k.

The action of the groupR onR
6 inQ-coordinates is

ρ(xµ, k, φ) = (xµ, ρk, φ),
so as a chart ofRP

5 \ {k = 0} we use the hyperplane

U := {ξ ∈ R
6|k = 1} ∼= RP

5 \ {k = 0}, (2)

transversal to theR-orbits of the points ofR6 \ {k = 0}. The image of the line [(xµ, k, φ)]
through the point(xµ, k, φ), k �= 0 (i.e., of the equivalence class of this point with respect
to the action ofR) is the point(xµ,1, φ) ∈ U .

The points of the conformal compactification̄M of Minkowski space are realized as
elements of the projected light coneQP

5, i.e., as isotropic straight lines inR6, and the
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points of Minkowski spaceM correspond to the isotropic straight lines inR
6 lying outside

the hyperplanek = 0. We use the manifold

M := {ξ ∈ R
6|k = 1, φ = 0} ∼= QP

5 \ {k = 0} (3)

and the mapping

χ : QP
5 \ {k = 0} → M : [(xµ, k, φ)] �→ (xµ,1,0) =: (xµ)

as a chart ofQP
5 \ {k = 0}.

In the Dirac’s construction, the isomorphismC0(1,3) ∼= O0(2,4)/Z2 is used in the
following way. The conformal transformations in̄M (in general nonlinear) correspond to
the natural action of the linear groupO0(2,4) on the straight lines inR6. The 15 generators
of O0(2,4) in ξ -coordinates are

(Xmn)
p
q = ηmqη

p
n − ηnqη

p
m, m < n,

and the corresponding fundamental vector fields are

Xmn = (Xmn)
p
qξ
q ∂

∂ξp
= ξm ∂

∂ξn
− ξn ∂

∂ξm
, m < n.

The “physical fundamental vector fields”[20] are

Mµν := Xµν = xµ∂ν − xν∂µ, 0 ≤ µ < ν ≤ 3,

Pµ := Xµ6−Xµ5 = ∂µ,
Kµ := −Xµ5−Xµ6 = 2xµ(x · ∂)+ (2φ − x2)∂µ − 2kxµ∂− + 4φxµ∂+,
D := −X56 = x · ∂ − k∂− − 2φ∂+,

wherex · ∂ := xµ∂µ, etc.
The transformations exp(ωµνMµν) do not changek andφ and act onxµ as Lorentz

transformations, whereas the transformations generated byPµ,Kµ andD act as follows:

P(t) := exp(tµPµ) :



xµ

k

φ


 �→



xµ + tµ
k

φ


 ,

K(c) := exp(cµKµ) :



xµ

k

φ


 �→



p−1(c, x, φ)[xµ − cµ(x2− 2φ)]

p(c, x, φ)k

p−2(c, x, φ)φ


 ,

D(d) := exp(dD) :



xµ

k

φ


 �→




edxµ

e−dk
e2dφ


 ,

wherep(c, x, φ) := 1− 2(c · x)+ c2(x2− 2φ).
With respect to their actions onxµ, the vector fieldsMµν , Pµ andD generate respec-

tively Lorentz transformations, translations and dilatations; whenφ = 0, i.e., onQ6, Kµ



P.A. Nikolov, N.P. Petrov / Journal of Geometry and Physics 44 (2003) 539–554 543

generate special conformal transformations. The physical fundamental vector fields satisfy
the well-known commutation relations of the Lie algebra ofC0(1,3).

3. Dimensional reduction of τ(R6) and τ∗(R6)

We define lifts of the action ofR onR
6 to actionsT (λ) of R onτ(R6)by bundle morphisms

for every real numberλ:

T (λ)ρ (ξ, u) := (ρξ, ρλu), (4)

whereξ ∈ R
6, (ξ, u) ∈ τ(R6)ξ , ρ ∈ R. The numberλ, specifying the action ofR onτ(R6),

is usually called aconformal dimension of the fields. Since the caseλ = 1 corresponds to
the tangent lift of the action ofR, λ = 1 is called acanonical conformal dimension. An
R-invariant vector fieldX ∈ C∞(τ (R6))R satisfies the equation

T (λ)ρ X(ρ
−1(ξ)) = X(ξ). (5)

LetXm,Am,Fmn,Jm be the components of the corresponding tensors inξ -coordinates and
(XM) := (Xµ,X−, X+), etc. be their components inQ-coordinates. In coordinate-free
notation, we useX,A,F,J. Then(5) is equivalent toXm(ρξ) = ρλXm(ξ), which in
Q-coordinates reads

Xµ,+(x, ρk, φ) = ρλ−1Xµ,+(x, k, φ), X−(x, ρk, φ) = ρλX−(x, k, φ).
The first step of the dimensional reduction ofτ(R6) is the restriction of its base to the

light coneQ6, which is simultaneouslyO0(2,4)- andR-invariant submanifold ofR6. As a
result, we obtain theO0(2,4)- andR-intertwining SES

0→ τ(Q6)
m→τ(R6)Q6

n→ν(Q6)→ 0 (6)

(cf. Eq. (7)in Part I). The subbundlem(τ(Q6)) ⊂ τ(R6)Q6, consisting of the vectors with
components(Xµ,X−,0) inQ-coordinates, isO0(2,4)R-invariant.

The second step of the dimensional reduction is theR-reduction of the SES(6). After
this process,(6) converts into theO0(2,4)R-, i.e.,C0(1,3)-intertwining SES

0→ τ(Q6)R
m→(τ (R6)Q6)R

n→ν(Q6)R → 0 (7)

consisting of vector bundles overM (3). The action ofR onQ6 is free, therefore(7) is
equivalent to theC0(1,3)-intertwining SES

0→ τ(Q6)M
m→τ(R6)M

n→ν(Q6)M → 0,

hence the subbundlem(τ(Q6)M) ⊂ τ(R6)M , consisting of all vectors of the form(Xµ,
X−,0), isC0(1,3)-invariant.

On the other hand, theR-reduction ofτ(Q6) (the left term of(6)) gives theO0(2,4)-inter-
twining SES

0→ τ v(Q6)R
q→τ(Q6)R

r→τ(M)→ 0,
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hence the subbundleq(τ v(Q6)R) ⊂ τ(Q6)R, consisting of all vectors of the form(0, X−),
isO0(2,4)R-invariant.

Therefore, we obtain the following filtration ofC0(1,3)-invariant bundles overM:

m(q(τ v(Q6)R)) ⊂ m(τ(Q6)M) ⊂ τ(R6)M

or, inQ-coordinates,

{(0, X−,0)} ⊂ {(Xµ,X−,0)} ⊂ {(Xµ,X−, X+)},
where{·} represents the form of the vectors in the corresponding subbundles.

In the case of the cotangent bundleτ ∗(R6), the lift (4) leads to

T (λ)ρ (ξ, w) := (ρξ, ρ−λw), (8)

where(ξ, w) ∈ τ ∗(R6)ξ . An R-invariant differential 1-formA ∈ C∞(τ ∗(R6))R satisfies
Am(ρξ) = ρ−λAm(ξ), which inQ-coordinates reads

Aµ,+(x, ρk, φ) = ρ1−λAµ,+(x, k, φ), A−(x, ρk, φ) = ρ−λA−(x, k, φ).
InQ-coordinates, the Lorentz transformations do not changeA− andA+ and act onAµ in
the usual way; the translations do not change any of the components ofA; the actions of
the special conformal transformations and dilatations are given inAppendix B.

In the case ofτ(Q6), we first performR-dimensional reduction, which yields the
O0(2,4)R-intertwining SES

0← τ v(R6)∗U
i∗←τ ∗(R6)U

j∗←τ ∗(U)← 0 (9)

of vector bundles overU . In the process of reduction, we have used that the action ofR

on R
6 is free, hence(τ v(R6)∗)R = (τ v(R6)R)

∗ = τ v(R6)∗U , τ ∗(R6)R = τ ∗(R6)U , and
(p∗τ ∗(RP

5))R = τ ∗(U).
Restricting(9) to theO0(2,4)R-invariant submanifoldM ⊂ U , we obtain the following

C0(1,3)-intertwining SES of vector bundles overM

0← τ v(R6)∗M
i∗←τ ∗(R6)M

j∗←τ ∗(U)M ← 0. (10)

On the other hand, theO0(2,4)R-invariance ofM as a submanifold ofU gives us the
C0(1,3)-intertwining SES

0← τ ∗(M) k
∗
←τ ∗(U)M l∗←ν∗(M)← 0, (11)

wherek : τ(M)→ τ(U)M is the natural embedding andν∗(M) := (τ (U)M/τ(M))∗ (cf.
Eq. (7)in Part I).

From(10) and (11), we obtain the followingC0(1,3)-invariant filtration of vector bundles
overM:

j∗(l∗(ν∗(M))) ⊂ j∗(τ ∗(U)M) ⊂ τ ∗(R6)M,

or, inQ-coordinates,

{(0,0, A+)} ⊂ {(Aµ,0, A+)} ⊂ {(Aµ,A−, A+)}.
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This allows us to impose the conformally invariant conditions

A− = 0 or Aµ = A− = 0 (12)

(which can be noticed from the transformation laws given inAppendix B).

4. Dimensional reduction of the 6DMEs

Let A ∈ C∞(τ ∗(R6)) be the six-dimensional electromagnetic vector potential,J ∈
C∞(τ ∗(R6)) be the electromagnetic current density and

Fmn = (dA)mn = ∂An
∂ξm
− ∂Am
∂ξn

be the field strength tensor. Then the 6DMEs are

∂Fmn

∂ξm
= �6An − ∂

∂ξn
(∇6 ·A) = Jn. (13)

Note that since the homogeneous Maxwell equations dF = 0 are automatically conformally
invariant, we consider only the inhomogeneous ones and for the sake of brevity we omit
the adjective “inhomogeneous”.

InQ-coordinates,(13) read

∇NFNµ =
1

k2
∂νFνµ − 1

k
∂+Fµ− − 1

k
∂−Fµ+ + 2φ

k2
∂+Fµ+ = Jµ,

∇NFN− = 1

k2
∂νFν− − 1

k
∂−F−+ + 2φ

k2
∂+F−+ − 3

k2
F−+ = J−,

∇NFN+ = 1

k2
∂νFν+ + 1

k
∂+F−+ = J+,

or, in terms of vector potential,

∇NFNµ =
1

k2
�Aµ − 1

k2
∂µ(∂ · A)+ 2

k
∂−∂+Aµ − 2φ

k2
∂+∂+Aµ − 1

k
∂µ∂+A−

−1

k
∂µ∂−A+ + 2φ

k2
∂µ∂+A+ = Jµ,

∇NFN− = 1

k2
�A− − 1

k2
∂−(∂ · A)+ 1

k
∂−∂+A− − 2φ

k2
∂+∂+A− − 1

k
∂−∂−A+

+2φ

k2
∂−∂+A+ + 3

k2
∂+A− − 3

k2
∂−A+ = J−,

∇NFN+ = 1

k2
�A+ − 1

k2
∂+(∂ · A)− 1

k
∂+∂+A− + 1

k
∂−∂+A+ = J+,

where�Aµ := ηρν∂ρ∂νAµ, ∂ · A := ηµν∂µAν .
Obviously, the 6DMEs areO0(2,4)-invariant. They are alsoR-invariant in the canonical

case whenA andJ change respectively according to the actionsT (1) andT (3) of R.
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We perform theR-reduction of 6DMEs, following the general procedure described in
Section 5in Part I. From the vanishing of the Lie derivative of the action(8) of R on the
R-invariant differential 1-formsA ∈ C∞(τ ∗(R6))R, we obtain

ξm
∂An
∂ξm
+ λAn = 0.

In the caseλ = 1, this equation reads

∂−Aµ,+(x, k, φ) = 0, ∂−A−(x, k, φ) = 1

k
A−(x, k, φ). (14)

We restrict the first prolongation of(14)to the submanifoldU (2), transversal to theR-orbits
in R

6, and obtain the splitting relations

∂−Aµ,+(x, φ) = 0, ∂−A−(x, φ) = −A−(x, φ),
∂−∂−Aµ,+(x, φ) = 0, ∂−∂−A−(x, φ) = 0,

whereAµ,−,+(x, φ) := Aµ,−,+(x,1, φ).
With these relations, theR-reduced 6DMEs read

�Aµ − ∂µ(∂ · A)− 2φ∂+∂+Aµ − ∂µ∂+A− + 2φ∂µ∂+A+ = Jµ,
�A− − 2φ∂+∂+A− + 2∂+A− = J−,
�A+ − ∂+(∂ · A)− ∂+∂+A− = J+. (15)

The restriction to the submanifoldM is complicated because after settingφ = 0 in (15),
we obtain the equations

�Aµ − ∂µ(∂ · A)− ∂µ∂+A− = Jµ,
�A− + 2∂+A− = J−,
�A+ − ∂+(∂ · A)− ∂+∂+A− = J+ (16)

which contain∂+ derivatives, i.e., theR-reduced 6DMEs are not internal forM. To re-
strict the noninternal DO in(16) to M, we need some additional information, e.g., a
splitting relation for the SES(8) in Part I. Besides, we want the restricted DO to be
conformally invariant. Splitting relations of this kind can be obtained by considering the
kernel of a manifestlyO0(2,4)-invariant DO after itsR-reduction and restriction
toM.

Let us choose as a splitting relation the manifestlyO0(2,4)-invariant equation

∇6 ·A = ∂

∂ξm
Am = 0. (17)

Its R-reduction reads

∂ · A(x, φ)+ ∂+A−(x, φ)− 2φ∂+A+(x, φ)+ 2A+(x, φ) = 0. (18)
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The first prolongation of(18), restricted toM, yields

∂ · A+ ∂+A− + 2A+ = 0,

∂µ(∂ · A)+ ∂µ∂+A− + 2∂µA+ = 0,

∂+(∂ · A)+ ∂+∂+A− = 0. (19)

This is not a splitting of the SES(8) in Part I, but provides us with a sufficient set of splitting
relations for it. Combining(16)with (19), we obtain the equations

�Aµ(x)+ 2∂µA+(x) = Jµ(x),
�A−(x)− 2∂ · A(x)− 4A+(x) = J−(x),
�A+(x) = J+(x), (20)

often referred to asconformal electrodynamics equations [5,7].
Numerous modifications of(20), discussed in the literature, can be easily obtained from

them. For example, eliminatingA+(x), we obtain

∂µFµν(x)+ 1
2∂ν�A−(x) = Jν(x)+ 1

2∂νJ−(x),
1
4�2A−(x)− 1

2�∂ · A(x) = J+(x)− 1
4�J−(x). (21)

Some of the conformally invariant conditions(12)can be imposed independently ofA and
J. For example, settingJ−(x) = 0 in (21), we arrive at the system[7,22,11]

∂µFµν(x)+ 1
2∂ν�A−(x) = Jν(x),

1
4�2A−(x)− 1

2�∂ · A(x) = J+(x).
If, in addition,A−(x) = 0, we obtain the equations[5,18]

∂µFµν(x) = Jν(x),
−1

2�∂ · A(x) = J+(x).

5. Conformally invariant gauge transformations

In this section, we derive the most general gauge transformations preserving the conformal
invariance. LetA′ = A+ dS be a gauge transformation inR6. TheR-invariance ofA and
A′ imposes the conditions

∂−∂µ,+S(x, k, φ) = 0, ∂−∂−S(x, k, φ) = −1

k
∂−S(x, k, φ)

onS (cf. (14)). Their solution is

S(x, k, φ) = s ln |k| + t (x, φ), (22)

wheres is a constant andt is an arbitrary function ofx andφ. The dimensional reduction
of (22)yields

S(x, φ) := S(x,1, φ) = t (x, φ), ∂−S(x, φ) := ∂−S(x, k, φ)|k=1 = s. (23)
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The actions ofK(c) andD(d) onS(x, k, φ) (22)are

D(d)(S)(x, k, φ) = sd+ S(e−dx, k,e−2dφ),

K(c)(S)(x, k, φ) = s ln |p(−c, x, φ)| + S(′x, k,′ φ),
where′xµ := p−1(−c, x, φ)[xµ+ cµ(x2−2φ)], ′φ := p−2(−c, x, φ)φ. The infinitesimal
form of these relations is

δS(x, k, φ) = d[s − (x · ∂ + 2φ∂+)S(x, k, φ)],
δS(x, k, φ) = cµ{2sxµ + [(x2− 2φ)∂µ − 2xµx · ∂ − 4φxµ∂+]S(x, k, φ)}.

After theR-reduction and restriction toM, we obtain

D(d)(S)(x, k, φ)= sd+ S(e−dx) ≈ S(x)+ d[s − x · ∂S(x)],
K(c)(S)(x, k, φ)= s ln |p(−c, x)| + S(′x)

≈ S(x)+ cµ[2sxµ + (x2∂µ − 2xµx · ∂)S(x)],
whereS(x) := S(x,0), ′xµ := p(−c, x,0)(xµ + cµx2).

The gauge transformations for the conformal electrodynamicsequations (20)must be
compatible with the condition(17)used as a splitting relation for obtaining(20). Therefore,
the gauge function must satisfy the six-dimensional “wave equation”�6S = 0, which in
Q-coordinates reads

1

k2
�S(x, k, φ)+ 2

k
∂−∂+S(x, k, φ)− 2φ

k2
∂+∂+S(x, k, φ)+ 2

k2
∂+S(x, k, φ) = 0.

After theR-reduction, we obtain fort (x, φ) the condition

�t (x, φ)− 2φ∂+∂+t (x, φ)+ 2∂+t (x, φ) = 0,

whose first prolongation, restricted toM, yields the relations

∂+t (x,0)+ 1
2�t (x,0) = 0, (24)

∂+�t (x,0) = 0. (25)

Acting on(24)with � and taking into account(25), we obtain the internal forM condition
�2t (x) = 0, wheret (x) := t (x,0). Due to(23) and (24), the conformally invariant “gauge
transformations” inM are

A′µ(x) = Aµ(x)+ ∂µS(x), A′−(x) = A−(x)+ s, A′+(x) = A+(x)− 1
2�S(x),

where the gauge functionS(x) is a solution to

�2S(x) = 0 (26)

[5,7,11]. It is easy to check that(26) is sufficient for the gauge invariance of(20). If the
conformally invariant conditionA−(x) = 0 is imposed, the constants must be zero[15].
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6. A complete set of splitting relations for the Dirac’s construction

When one wants to obtain a conformally invariant DO in Minkowski space using the
Dirac’s construction and starting from a manifestlyO0(2,4)-invariant DO inR

6, the re-
striction of this DO to the submanifoldM (3) plays a crucial role. To obtain a conformally
invariant DO inM, one needs anO0(2,4)-invariant splitting relation. We shall show that a
complete set of splitting relations for noncanonical conformal dimensions can be obtained
from the prolongation of the six-dimensional D’Alembertian�6.

Let us consider the equation

�6Am = 0, (27)

and letR act onC∞(τ ∗(R6)) according to(8). InQ-coordinates,(27) reads

1

k2
�Aµ + 2

k
∂−∂+Aµ − 2φ

k2
∂+∂+Aµ + 2

k2
∂µA+ = 0,

1

k2
�A− + 2

k
∂−∂+A− − 2φ

k2
∂+∂+A− − 2

k3
(∂ · A)+ 2

k2
∂+A− − 2

k2
∂−A+

+ 4φ

k3
∂+A+ − 4

k3
A+ = 0,

1

k2
�A+ + 2

k
∂−∂+A+ − 2φ

k2
∂+∂+A+ = 0. (28)

After R-reduction and restriction of(28) toM, we obtain

�Aµ(x)+ 2(1− λ)∂+Aµ(x)+ 2∂µA+(x) = 0,

�A−(x)+ 2∂ · A(x)+ 2(1− λ)∂+A−(x)+ 2(λ− 3)A+(x) = 0,

�A+(x)+ 2(1− λ)∂+A+(x) = 0. (29)

For the canonical conformal dimensionλ = 1, the DO in the left-hand side of(29)is internal
for M. If λ �= 1, (29) gives conformally invariant splitting relations for first-order DOs on
C∞(τ (R6)):

∂+Aµ(x) = 1

2(λ− 1)
[�Aµ(x)+ 2∂µA+(x)],

∂+A−(x) = 1

2(λ− 1)
[�A−(x)− ∂ · A(x)+ 2(λ− 3)A+(x)],

∂+Aµ(x) = 1

2(λ− 1)
�A+(x). (30)

The first prolongation of(28)gives a complete set of conformally invariant splitting relations
for second-order DOs ifλ �= 0,1:

∂+∂+Aµ(x) = 1

4(λ− 1)λ
[�2Aµ(x)+ 2∂µ�A+(x)],

∂+∂+A−(x) = 1

4(λ− 1)λ
[�2A−(x)− 4�∂ · A(x)+ 4(λ− 3)�A+(x)],

∂+∂+A+(x) = 1

4(λ− 1)λ
�2A+.
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The second prolongation of(28) gives a complete set of conformally invariant splitting
relations for third-order DOs ifλ �= −1,0,1:

∂+∂+∂+Aµ(x) = 1

8(λ− 1)λ(λ+ 1)
[�3Aµ(x)+ 4∂µ�2A+(x)+ 4λ∂µ�A+(x)],

∂+∂+∂+A−(x) = 1

8(λ− 1)λ(λ+ 1)
[�3A−(x)− 6�2∂ · A(x)+ 6(λ− 3)�2A+(x)],

∂+∂+∂+Aµ(x) = 1

8(λ− 1)λ(λ+ 1)
�3A+(x).

In general, the(k − 1)st prolongation of(28), followed by a restriction toM, provides a
complete set of conformally invariant splitting relations for DOs of orderk if λ �= 2−k,3−
k, . . . ,1. In general, the order of the DOs in the process of restriction increases.

As an example of application, we reduce theO0(2,4)-invariant 6-current conservation
law

∇6 · J = 0,

which inQ-coordinates reads

1

k2
∂ · J + 1

k
∂+J− − 1

k
∂−J+ − 2φ

k2
∂+J+ + 2

k2
J+ = 0.

PerformingR-reduction for the canonical forJ conformal dimensionλ = 3, we have

∂ · J (x, φ)+ ∂+J−(x, φ)− 2φ∂+J+(x, φ) = 0.

Applying (30) to this equation, we obtain the conformally invariant condition

∂ · J (x)+ 1

2
�J−(x) = 0 (31)

[6,7,11,13], which can be regarded as a conservation law forJµ(x)+ 1
2∂µJ−(x). Calculating

the divergence of the first equation of(21)and taking into account(31), we have

�2A− = 0. (32)

Combining(32)with (21), we get the one-parametric family

∂µFµν(x)+ 1
2∂ν�A−(x) = Jν(x)+ 1

2∂νJ−(x),

β�2A−(x)− 1
2�∂ · A(x) = J+(x)+ 1

4�J−(x).

The more popular current conservation law

∂ · J (x) = 0,

valid for the conformal electrodynamicsequations (20)with J−(x) = 0, can be derived
from (31)by imposing the conformally invariant conditionJ− = 0.
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Appendix A

(We use the notations fromSection 2and work inQ-coordinates.)
The manifoldQ6 is anO0(2,4)-invariant submanifold ofR6; the action ofO0(2,4) on

it satisfies condition A from Part I and its tangent and cotangent lifts satisfy condition B
from Part I. This yields theO0(2,4)-intertwining SESs

0→ τ(Q6)
m→τ(R6)Q6

n→ν(Q6)→ 0, 0← τ ∗(Q6)
m∗←τ ∗(R6)Q6

n∗←ν∗(Q6)← 0,

consisting ofO0(2,4)-reducible vector bundles overQ6.
The fiberτ(Q6)b of τ(Q6) overb ∈ Q6, naturally embedded inτ(R6)b, consists of the

vectors annihilating onQ6 the differential form

d(ξmξ
m) = d(2k2φ) = 2k(2φ dk + k dφ).

Thereforeτ(Q6) is generated by the vector fields∂µ and∂−, andτ ∗(Q6) is generated by
the differential forms dxµ and dk (µ = 0,1,2,3). From the above SESs, we obtain that

m(τ(Q6)) = {(Xµ,X−,0)} and n∗(ν∗(Q6)) = {(Aµ,A−,0)}

areO0(2,4)-invariant subbundles ofτ(R6)Q6 andτ ∗(R6)Q6, respectively. The action of
O0(2,4) onQ6 is transitive and we choose the pointy := (0,0,0,0,1,0) ∈ Q6 for a
realization ofQ6/O0(2,4). The action ofO0(2,4) on y is generated by the vector field
tµ∂µ − d∂−. Hence, the stationary groupO0(2,4)y of the pointy consists of the Lorentz
transformationsM(ω) := exp(ωµνMµν) and the special conformal transformationsK(c),
and therefore is noncompact. The actions ofM(ω) andK(c) on τ(Q6)y andτ ∗(Q6)y are

M(ω)

(
Xµ

X−

)
=
(
Mµ

ν(ω) 0

0 1

)(
Xν

X−

)
,

K(c)

(
Xµ

X−

)
=
(
δ
µ
ν 0

−2cν 1

)(
Xν

X−

)
,
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M(ω)

(
Aµ

A−

)
=
(
Mµ

ν(−ω) 0

0 1

)(
Aν

A−

)
,

K(c)

(
Aµ

A−

)
=
(
δ
µ
ν 2cµ
0 1

)(
Aν

A−

)
.

Therefore stτ(Q6)y consists of all vectors of the formX−(∂−)y , whereas stτ ∗(Q6)y
consists of the zero 1-form only. Hence, performing anO0(2,4)-reduction ofτ(Q6) and
τ ∗(Q6), we obtain respectively the reduced bundles

τ v(Q6)O0(2,4) = τ(Q6)O0(2,4)

and

(τ v(Q6)∗)O0(2,4) = (τ ∗(Q6))O0(2,4),

which are not dual because

dim(τ v(Q6)O0(2,4))
∗ = dim(stτ(Q6)y)

∗ = 1,

whereas

dim(τ v(Q6)∗)O0(2,4) = dim stτ ∗(Q6)y = 0.

Appendix B. Actions of the special conformal transformations and dilatations on
C∞(τ∗(R6))

In many papers on conformal electrodynamics the authors use slightly different adapted
to the light cone inR6 coordinates, and usually work only on the light coneQ6, so we
present a collection of the basic formulae for the action of the conformal group on the
1-forms inR

6 for different conformal dimensionsλ.

1. Special conformal transformations:
(a) finite transformations:

K(c)(A)µ(x, k, φ)

= p−2[p(δνµ + 2xµc
ν)− 2(cµ + c2xµ)(x

ν + cν(x2− 2φ))]

×Aν(′x, pk,′ φ)+ 2k(cµ + c2xµ)A−(′x, pk, p−2φ)

−4φp−3(cµ + c2xµ)A+(′x, pk, p−2φ),

K(c)(A)−(x, k, φ) = pA−(′x, pk, p−2φ),

K(c)(A)+(x, k, φ)

= 2p−2[c2(xν + cν(x2− 2φ))− pcν ]Aν(
′x, pk, p−2φ)

−2kc2A−((′x, pk, p−2φ)+ p−3(p + 4φc2)A+(′x, pk, p−2φ),
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wherep := p(−c, x, φ), ′xµ := p−1[xµ + cµ(x2 − 2φ)]; after R-reduction and
restriction toM:

K(c)(A)µ(x)= p−1−λ[p(δνµ + 2xµc
ν)− 2(cµ + c2xµ)(x

ν + x2cν)]

×Aν(K(−c)x)+ 2(cµ + c2xµ)A−(K(−c)x),
K(c)(A)−(x)= p1−λA−(K(−c)x),
K(c)(A)+(x)= 2p−1−λ[c2(xν + x2cν)− pcν ]Aν(K(−c)x)

−2p−λc2A−(K(−c)x)+ p−1−λA+(K(−c)x),

wherep := p(−c, x,0),K(−c)xµ := p−1(xµ + x2cµ);
(b) infinitesimal transformations:

δAµ(x, k, φ)= {[(x2− 2φ)c · ∂ − 2c · x(x · ∂ + 1)+ 2kc · x∂− − 4φc · x∂+]δνµ
+2(xµc

ν − cµxν)}Aν(x, k, φ)
+2kcµA−(x, k, φ)− 4φcµA+(x, k, φ),

δA−(x, k, φ)= [(x2− 2φ)c · ∂ − 2c · x(x · ∂ − k∂− + 2φ∂+ − 1)]A−(x, k, φ),
δA+(x, k, φ)=−2cνAν(x, k, φ)+ [(x2− 2φ)c · ∂ − 2c · x(x · ∂ + 2)

+2kc · x∂− − 4φc · x∂+]A+(x, k, φ);

afterR-reduction and restriction toM:

δAµ(x)= {[x2c · ∂ − 2c · x(x · ∂ + λ)]δνµ + 2(xµc
ν − cµxν)}Aν(x)

+2cµA−(x),
δA−(x)= [x2c · ∂ − 2c · x(x · ∂ + λ− 1)]A−(x, k, φ),
δA+(x)=−2cνAν(x)+ [x2c · ∂ − 2c · x(x · ∂ + λ+ 1)]A+(x).

2. Dilatations:
(a) finite transformations:

D(d)(A)µ(x, k, φ) = e−dAµ(e−dx,edk,e−2dφ),

D(d)(A)−(x, k, φ) = edA−(e−dx,edk,e−2dφ),

D(d)(A)+(x, k, φ) = e−2dA+(e−dx,edk,e−2dφ);

afterR-reduction and restriction toM:

D(d)(A)µ(x) = e−λdAµ(e−dx),
D(d)(A)−(x) = e−(λ−1)dA−(e−dx),
D(d)(A)+(x) = e−(λ+1)dA+(e−dx);
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(b) infinitesimal transformations:

δAµ(x, k, φ) = −d(x · ∂ − k∂− + 2φ∂+ + 1)Aµ(x, k, φ),

δA−(x, k, φ) = −d(x · ∂ − k∂− + 2φ∂+ − 1)A−(x, k, φ),
δA+(x, k, φ) = −d(x · ∂ − k∂− + 2φ∂+ + 2)A+(x, k, φ);

afterR-reduction and restriction toM:

δAµ(x) = −d(x · ∂ + λ)Aµ(x),
δA−(x) = −d(x · ∂ + λ− 1)A−(x),
δA+(x) = −d(x · ∂ + λ+ 1)A+(x).
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